CanHiS User Manual

Version 2.1

Joannes Bosco Hernández-Águila and Emanuele Bertone INAOE

July, 2016

Contents

1	Intr	oducti	on	3									
2	The instrument												
	2.1 The optics												
		2.1.1	Comparison and flat field lamps $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	5									
		2.1.2	The guiding optics	5									
		2.1.3	The spectrograph	6									
3	Obs	ervatio	on tutorial	15									
	3.1	Compa	arison lamp image	15									
	3.2	Target	observation	17									
A	Nor	malize	d Filters Response	19									
в	Way	velengt	h as Function of Crank Number and Order	23									

Chapter 1

Introduction

The Cananea High-Resolution Spectrograph —CanHiS, is a f/13.5, "R3.2" very high spectral resolution echelle spectrograph ($\mathcal{R} \approx 85\,000 - 185\,000$), with adjustable quasi-Littrow mounting. It uses medium-band interference filters to isolate individual dispersion orders. Not having a cross disperser, CanHiS is therefore a very high efficiency instrument ($\approx 36\%$ according to Hunten et al., 1991).

Table 1.1 summarizes the principal opto-mechanical characteristics of CanHiS, attached to the 2.1-m Telescope of the OAGH.

Table 1.1: CanHi	5 Performance	Specifications
------------------	---------------	----------------

Entrance aperture (at 2.1 m – $f/12$ Cananea Telescope) Maximum (slit width $\approx 50 \ \mu$ m) Minimum (slit width $\approx 25 \ \mu$ m)	$0^{\hat{n}}410 \\ 0^{\hat{n}}205$
Spatial resolution (at 2.1 m – $f/12$ Cananea Telescope) Maximum (slit length ≈ 4.62 mm) Minimum (slit length ≈ 2.81 mm)	$37\hat{?}8$ $23\hat{?}0$
Resolution $\delta\lambda$ Maximum (at minimum slit width) Minimum (at maximum slit width)	$\approx 0.03 \text{ \AA}$ $\approx 0.08 \text{ \AA}$
Power resolution $\mathcal{R} = \lambda_c / \delta \lambda$ Maximum Minimum	$\approx 185000 \\ \approx 85000$
Typical wavelength range $\Delta\lambda$	$\approx 50 \text{ Å (near to 4500 Å)}$ $\approx 90 \text{ Å (near to 6300 Å)}$ $\approx 140 \text{ Å (near to 7800 Å)}$
Limiting magnitude m_v (at $\delta\lambda \approx 0.200$ Å, and $\lambda_c \approx 6707$ Å)	$\approx 10.2 \text{ mag}$

Chapter 2

The instrument

Figure 2.1 shows a general opto-mechanical layout of CanHiS, located into a x, y, z coordinate system. The main rectangular box of the spectrograph is divided into two chambers: a small upper compartment, containing a box with guiding optics and comparison sources, and a lower and principal compartment, containing the spectrograph optics, separated between them by a shelf. The total size of the spectrograph box is $8.50 \times 47.9 \times 25.0$ inches, in the x, y, z axes, respectively. Figure 2.2 shows an isometric opto-mechanical modelling of the instrument.

2.1 The optics

2.1.1 Comparison and flat field lamps

CanHiS uses an internal Uranium-Neon hollow-cathode discharge lamp (Fig. 2.3a) for high-resolution wavelength calibration, and an "external" halogen lamp (Fig. 2.3b), placed at the spectrograph rear side, for flat fields response detector correction. Both lamps are situated in the upper compartment containing the guiding optics. A pair of motors, attached to the righ side of the spectrograph (the x-z side, Fig. 2.4a), control both the selection of the pencil-beam light from the telescope or the light from lamps, as well as the type of lamp to use: either the internal UNe lamp or the external halogen lamp. The two motors are remotely controlled through the general software control (Fig. 2.4b).

2.1.2 The guiding optics

For the time being CanHiS only has one single method to help guiding and verify the placement of the target object at the entrance slit. An external camera (Fig. 2.5b) used as an ocular microscope situated at the entrance slit observation point (Fig. 2.5a), on the front of the instrument (the y - z side), allows to check, on a monitor at the control room, if the target is centered at the entrance slit, at the same time that it provides a

Figure 2.1: CanHiS optical sketch and mechanical layout

way to help the guiding.

2.1.3 The spectrograph

The spectrograph optics consists of the following relevant elements: (a) the configurable entrance slit; (b) a set of interchangeable interference filters for isolating individual dispersion orders (instead of a cross disperser system); (c) the adjustable quasi-Littrow mounting echelle grating attached to the M₃ mirror; and (d) the detector, by the time a $2k \times 2k$ EE2V 42-40 CCD, with 15 μ m pixels.

Figure 2.2: Opto-mechanical simulation of CanHiS.

Figure 2.3: a) Internal Uranium-Neon hollow-cathode discharge lamp, inside the upper compartment; and b) "External" halogen lamp, at the spectrograph rear side.

2.1.3.1 The configurable entrance slit

The entrance slit is placed into a special box which provides four independent degrees of freedom to set: a) the slit width (from less than 25 to $\approx 50 \ \mu m$); b) the slit length (from ≈ 2.81 to 4.62 mm); c) the slit position over the observation plane, into a square spatial

Figure 2.4: a) Engines for selecting either the light from the telescope or the light from calibration lamps, as well as the type of lamp to use; b) Screenshot of the current E2V CCD control and imaging software and the control software for the calibration lamps.

Figure 2.5: a) External spectrograph entrance slit observation point; b) Current external camera, at the external spectrograph entrance slit observation point, used to check from the control room the target object positioning.

range of ≈ 1.81 mm by side; and d) the slit rotation with respect to the grooves of the echelle grating. The slit width, length, and position are handled by three independent micrometers, while the slit rotation is set through a screw and a calibrate dial at the box base. Figure 2.6 shows each one of the aforementioned elements.

Table 2.1 gives the slit length and the slit position as a function of the corresponding micrometer scale, and a approximate value for the slit width. For this last value, fine tuning needs to be experimentally determined because the corresponding micrometer is affected by mechanical worn-out.

Figure 2.6: Micrometers used to set the slit length, position and width. The screw allows to set the rotation angle.

Table 2.1: Numerical matching between micrometers scales and slit width, slit lenght and slit position. For the slit position, micrometer value of 0.00 is established as the zero-point value (0.00 mm) over the observation plane (the center of the CCD at the spatial direction), keeping the dispersion axis of the spectrum parallel to one side of the CCD and the spatial axis perpendicular. If dispersion axis is inverted and horizontal in the CCD, the minus sign represents slit upwards displacements respect the dispersion axis; if vertical, it represents displacements to the left.

micrometer	s	lit width	sl	it length	slit position		
scale [inches]	$[\mu m]$	[arc-seconds]	[mm]	[arc-seconds]	[mm]	[arc-seconds]	
0.075			4.62	37.79			
0.100			4.20	34.37	-1.20	-9.83	
0.125			3.78	30.94			
0.150			3.38	27.62			
0.175			2.94	24.09			
0.200			2.54	20.77	-0.59	-4.86	
0.225			2.11	17.24			
0.250			1.63	13.37			
0.275			1.22	09.94			
0.300			1.05	08.62	0.00	0.00	
0.325							
0.350			0.73	05.97			
0.375							
0.380	50.76	0.42					
0.385							
0.390							
> 0.395	21.70	0.18					
0.400					+ 0.61	+ 4.97	

2.1.3.2 The transmission filters set

The filters set is formed by a pair of hand-movable concentric filter wheels containing fifteen medium-band interference transmission filters for isolating individual dispersion orders, two transparent windows (one in each filter-wheel), and three dimmers. The desired filter is selected by chosing the corresponding label attached to the edge of each wheel, through a small section of the wheels that protrudes on the spectrograph rear side (parallel to y-z plane, Fig. 2.7). Table 2.2 lists the central wavelengths for each filter, and shows the order in which they are placed in the wheels.

Figure 2.7: Filter wheels window at the rear side of the spectrograph used for selecting the desired interference filter.

Table 2.2: List of filters mounted on the wheels, and its corresponding central wavelength and measured FWHM.

Upper Wheel	Central lambda	FWHM	Lower Wheel	Central lambda	FWHM
Α	CLEAR		0	CLEAR	
В	4086 Å	Å	1	ND 1	
\mathbf{C}	6723 Å	Å	2	ND 2	
D	5890 Å	Å	3	ND 3	
\mathbf{E}	6306 Å	Å	4	4227 Å	Å
\mathbf{F}	5007 Å	Å	5	4589 Å	Å
\mathbf{G}	3725 Å	Å	6	$7325~{ m \AA}$	Å
\mathbf{H}	7682 Å	Å	7	6563 Å	Å
J	8151 Å	Å	8	8047 \AA	Å
Κ	8273 Å	Å	9	10970 Å	

Appendix A depicts the normalized response for 14 filters, from 3725 to 8273 Å. Only the 10970 Å filter at the near-infrared region is not characterized. The response of the transparent windows, made in BK7 glass to give clearance to the light at the filter wheel which is not in use (named as CLEAR and labeled as **A** and **0** in Table 2.2), are also shown, as well as the response of the dimmers named ND1, ND2 and ND3 (labeled **1**, **2**, **3**), which attenuate the light to 10.0 %, 1.0 % and 0.1 %, respectively.

Table 2.3 displays the normalized transmission and the FWHM for the filters, obtained through a simple Gaussian fit.

Central	Normalized	Central	FWHM
lambda	$\operatorname{transmission}$	lambda fit	
3725 Å	1.0~%	$3755.1~{ m \AA}$	52.4 Å
4086 Å	35.3~%	4071.0 Å	38.6 Å
$4227~{\rm \AA}$	37.9~%	4217.1 Å	41.5 Å
$4589~{ m \AA}$	63.8~%	4582.0 Å	50.5 Å
5007 Å	$69.9 \ \%$	4989.6 Å	59.9 Å
5890 Å	>90~%	$5881.0~{ m \AA}$	73.5 Å
6306 Å	>90~%	6297.7 Å	83.8 Å
6563 Å	>90~%	6548.4 Å	90.2 Å
6723 Å	>90~%	6706.9 Å	110.1 Å
$7325~{ m \AA}$	> 90 %	$7303.0~{ m \AA}$	$123.7~{\rm \AA}$
7682 Å	>90~%	$7669.5~{ m \AA}$	$122.7 { m ~\AA}$
$8047~{\rm \AA}$	>90~%	8033.4 Å	149.4 Å
8151 Å	>90~%	$8158.3~{\rm \AA}$	151.5 Å
$8273~{\rm \AA}$	>90~%	$8254.9~{\rm \AA}$	$158.0~{\rm \AA}$

Table 2.3: List of filters mounted on the wheels

2.1.3.3 The quasi-Littrow mounting Echelle grating

The CanHiS configuration is based on the quasi-Littrow mounting (QLM), one of the three possible Echelle spectrograph designs referred to the orientation of the incident light beam with respect the grating echelle normal, in which the so-called off-axis angle γ is not equal to zero, and has a direct effect on the blaze function, the efficiency of the grating and the inclination of the projected slit on the detector (Schroeder & Hilliard, 1980).

Echelle grating is ruled at 79.01 l mm⁻¹ with a blaze angle δ of 72°.5 ("R3.2"; tan $\delta = 3.2$). The suitable opto-mechanical arrangement allows to adjust with high-precision the off-axis angle γ between 8° and 18°, while at the same time the mirror M₃ rotates and moves to follow the central diffracted wavelength, ensuring that this wavelength will be diffracted at the peak of the blaze function and then sent to the camera mirror M₄ and the detector. A high-precision external crank, placed at the right side of the spectrograph box, controls γ (from 8° to 18°) correlating its angular

value with a numerical code between 0000 and 7298 (Fig. 2.8).

Figure 2.8: Crank that correlates the angular value of γ with a numerical code.

At the centre of the slit, $\gamma = \gamma_0$ and central wavelength diffracted is (Hunten et al., 1991, Eq. 2.1):

$$\lambda_0 = \frac{2\sigma \sin \beta}{m} \cos \gamma_0 , \qquad (2.1)$$

where $\sigma = 79.01^{-1}$ mm, β is equal to the echelle blaze angle δ of 72°.5, and m is the best-suited dispersion order for the central wavelength selected. Appendix B presents a table correlating the numerical code provided by the crank, the central wavelength displayed and the best-suited order. As is evident from the Table ??, γ values between 8° to 18° had been chosen in order to cover the whole spectral range.

Diffracted spectral lines suffer an undesirable tilt angle χ , due to the aforementioned inclination of the projected slit on the detector (Hunten et al., 1991, expressed as $\tan \chi = 2 \tan \delta \sin \gamma$). This slant can be prevented by rotating the slit in a suitable position, using the relation between the central wavelength to observe and the graduation of the dial at the slit box base (Table 2.4).

control wavelength	dial
	scale
4086 Å	
$4227~{\rm \AA}$	
$4589~{\rm \AA}$	
5007 Å	
5890 Å	215.5
6306 Å	211.5
6563 Å	217.5
6723 Å	214.5
7325 Å	
7682 Å	

Table 2.4: Numerical matching between dial value and the central wavelength of the filters.

Chapter 3

Observation tutorial

The following procedure describes how to carry out an observational run with CanHiS. As an example, we will obtain a spectrum at the highest resolution ($\mathcal{R} \approx 140\,000$, with the slit as narrow as possible) attainable with a pixel size of 20 μ m (square), which is the size of the pixel of the VersArray CCD (That was used for the instrument commissioning and first light), using the filter named **C**, nominally centered at 6723 Å.

3.1 Comparison lamp image

- 1. As a first step, set the slit length micrometer to 0"200, the position micrometer to 0"200, and the dial at the slit box to 214.5. With this configuration the slit has a physical length of ≈ 2.54 mm (or 20.8 arcsec), it is centered on the optical path of the spectrograph, and it has the suitable angle for setting the spectral dispersion direction perpendicular to the spatial one. For this observation, the slit width micrometer was positioned to 0"395, which corresponds to a slit width $\leq 25 \,\mu$ m. This uncertainty is caused by the mechanical worn-out of the micrometer associated with the control of the slit width.
- 2. Turn-on the UNe lamp through the lamp control software (Fig. 2.4b), by ponting and clicking at the "Enciende Lamp U" button. To illuminate the slit with the UNe lamp, click at the "Posicionar Diagonal" button.
- 3. Set the upper filter wheel to the letter C (6723 Å), and the lower filter wheel to the number 0 (transparent BK7 window).
- 4. From Table B, we choose a crank value of 5260 to center the wavelength range at $\lambda_c = 6\,707$ Å [it represents an intermediate value between 5270 (6710 Å) and 5360 (6705 Å) in the 35th order]. Note that the value of $\lambda_c = 6\,707$ Å is at the center of the 35th order, to avoid, as far as possible, wavelength overlap from adjacent orders.

5. A first image of the UNe lamp can now be taken. With the narrowest slit, an exposure time of a few seconds provides clear emission lines (Fig. 3.1).

(b)

Figure 3.1: Example of a 2-d and transversal cut of a spectrum from the UNe lamp. Note the saturated Neon line at about 6.717 Å.

- 6. Once the calibration lamp image have been taken, turn-off the UNe lamp by clicking again in the "Enciende Lamp U" button, from the lamp control software (Fig. 2.4b). Remove the mirror that illuminates the slit by clicking the "Posicionar Diagonal" button.
- 7. To take a flat image, turn on the halogen lamp and move accordingly the mirrors by

selecting "Mueve Espejo" and "Posicionar diagonal" in the lamp control software. The voltage of the halogen lamp is also controlled from the control room. An exposure time of a few seconds is sufficient to obtain high signal-to-noise ratio (S/N) flat field images, with the voltage of the lamp set at 10 V.

8. Turn off the halogen lamp and set the instrument ready for the target observation by clicking again on "Mueve Espejo" and "Posicionar diagonal" in the lamp control software.

3.2 Target observation

1. The instrument is ready to observe the target object. Fig. 3.2 shows a 1-d uncalibrated very high-resolution ($\mathcal{R} \approx 140\,000$) flux spectra of the bright G-type star ($m_{\rm v} = 3.45$) eta Cas, acquired with the same configuration set for the UNe lamp of Fig. 3.1, with a exposure time of 600 s. The depicted spectrum has a high S/N ≥ 150 .

Figure 3.2: Uncalibrated spectrum of *eta Cas*, acquired with CanHiS at the 2.1-m OAGH Telescope and with the 1340×1300 CCD VersArray, $20 \ \mu \times 20 \ \mu$ pixel size, during the CanHiS commissioning.

Appendix A

Normalized Filters Response

(b)

⁽c)

Figure A.1: Normalized response for 14 intermediate band filters used by CanHiS. Dashed lines depicts the response for the BK7 windows, whereas dotted lines shows the response for the dimmers. In a), filter **G** (3725 Å) is practically useless because of the very low filter efficiency, and filters **B** and **4** (4085 and 4227 Å, respectively) have less than the 50% of efficiency, whereas filter **F** (5007 Å) has approximately an efficiency of 65%. In b), all the filters have an efficiency up to 90%, but filters **7** and **C** (centered at 6563 and 6723 Å, respectively) suffer of a small overlapping between them, although this occurs at wavelengths where the blaze function makes it irrelevant. At c), the red region, filters **8**, **J** and **K**, show serious overlapping, particularly the filters centered at 8151 and 8273 Å.

Appendix B

Wavelength as Function of Crank Number and Order

Table B.1: Echelle spectrograph wavelengths as a function of crank number and dispersion order. The table shows the lowest orders dispersion (21—33) displaying their corresponding wavelengths (from 6 976 to 11 386 Å) and the crank value (1st column) needed to select a specific central wavelength λ_c . Crank values were selected in such a way that wavelengths rows are separated by 3 mm at the spectrograph camera focus (turning the crank to the following row, the wavelength image shifts 3 mm).

Cr Ord.	21	22	23	24	25	26	27	28	29	30	31	32	33
0	11386	10868	10396	9963	9564	9196	8856	8540	8245	7970	7713	7472	7246
470	11378	10861	10389	9956	9558	9190	8850	8534	8239	7965	7708	7467	7241
890	11370	10853	10381	9949	9551	9183	8843	8528	8233	7959	7702	7462	7235
1270	11362	10846	10374	9942	9544	9177	8837	8522	8228	7953	7697	7456	7230
1610	11354	10838	10367	9935	9537	9171	8831	8516	8222	7948	7691	7451	7225
1920	11346	10830	10359	9928	9531	9164	8825	8510	8216	7942	7686	7446	7220
2210	11338	10823	10352	9921	9524	9158	8818	8504	8210	7937	7681	7441	7215
2480	11329	10814	10344	9913	9516	9150	8811	8497	8204	7930	7674	7435	7209
2730	11321	10806	10337	9906	9510	9144	8805	8491	8198	7925	7669	7429	7204
2950	11313	10799	10329	9899	9503	9137	8799	8485	8192	7919	7664	7424	7199
3170	11305	10791	10322	9892	9496	9131	8793	8479	8186	7914	7658	7419	7194
3370	11297	10784	10315	9885	9489	9125	8787	8473	8181	7908	7653	7414	7189
3550	11289	10776	10307	9878	9483	9118	8780	8467	8175	7902	7647	7408	7184
3730	11281	10768	10300	9871	9476	9112	8774	8461	8169	7897	7642	7403	7179
3900	11272	10760	10292	9863	9468	9104	8767	8454	8162	7890	7636	7397	7173
4050	11264	10752	10285	9856	9462	9098	8761	8448	8157	7885	7630	7392	7168
4200	11256	10744	10277	9849	9455	9091	8755	8442	8151	7879	7625	7387	7163
4340	11248	10737	10270	9842	9448	9085	8748	8436	8145	7874	7620	7382	7158
4480	11240	10729	10263	9835	9442	9078	8742	8430	8139	7868	7614	7376	7153
4610	11232	10721	10255	9828	9435	9072	8736	8424	8134	7862	7609	7371	7148
4730	11224	10714	10248	9821	9428	9066	8730	8418	8128	7857	7603	7366	7143
4850	11215	10705	10240	9813	9421	9058	8723	8411	8121	7851	7597	7360	7137
4960	11207	10698	10232	9806	9414	9052	8717	8405	8115	7845	7592	7355	7132
5070	11199	10690	10225	9799	9407	9045	8710	8399	8110	7839	7580	7349	7100
5170	11191	10682	10218	9792	9400	9039	8704	8393	8104	7834	7576	7344	7116
5270	11100	10675	10211	9760	9394	9032	8603	0001	8000	7822	7570	7339	7110
5360	11175	10650	10203	9770	9387	9020	8695 8695	0301 9275	8092	7817	7570	7220	7106
5540	11158	10651	10190	9771	9380	9020	8678	8360	8080	7811	7550	7320	7100
5625	11150	10643	10180	9756	0366	9012	8672	8363	8074	7805	7553	7317	7005
5705	11142	10636	10173	9749	9359	8999	8666	8357	8068	7799	7548	7312	7090
5785	11134	10628	10166	9742	9353	8993	8660	8351	8063	7794	7542	7307	7085
5860	11126	10620	10159	9735	9346	8986	8654	8345	8057	7788	7537	7301	7080
5935	11118	10613	10151	9728	9339	8980	8647	8338	8051	7783	7532	7296	7075
6005	11110	10605	10144	9721	9332	8973	8641	8332	8045	7777	7526	7291	7070
6075	11101	10596	10136	9713	9325	8966	8634	8326	8039	7771	7520	7285	7064
6145	11093	10589	10128	9706	9318	8960	8628	8320	8033	7765	7515	7280	7059
6210	11085	10581	10121	9699	9311	8953	8622	8314	8027	7760	7509	7275	7054
6270	11077	10573	10114	9692	9305	8947	8615	8308	8021	7754	7504	7269	7049
6330	11069	10566	10106	9685	9298	8940	8609	8302	8015	7748	7498	7264	7044
6390	11061	10558	10099	9678	9291	8934	8603	8296	8010	7743	7493	7259	7039
6450	11053	10551	10092	9671	9285	8927	8597	8290	8004	7737	7488	7254	7034
6510	11044	10542	10084	9664	9277	8920	8590	8283	7997	7731	7481	7248	7028
6565	11036	10534	10076	9657	9270	8914	8584	8277	7992	7725	7476	7242	7023
6620	11028	10527	10069	9650	9264	8907	8577	8271	7986	7720	7471	7237	7018
6670	11020	10519	10062	9643	9257	8901	8571	8265	7980	7714	7465	7232	7013
6720	11012	10511	10054	9636	9250	8894	8565	8259	7974	7708	7460	7227	7008
6770	11004	10504	10047	9629	9243	8888	8559	8253	7968	7703	7454	7221	7003
6820	10996	10496	10040	9622	9237	8881	8552	8247	7963	7697	7449	7216	6997
6865	10987	10488	10032	9614	9229	8874	8545	8240	7956	7691	7443	7210	6992
6910	10979	10480	10024	9607	9222	8868	8539	8234	7950	7685	7437	7205	6987
6955	10971	10472	10017	9600	9216	8861	8533	8228	7945	7680	7432	7200	6982
7000	10963	10465	10010	9593	9209	8855	8527	8222	7939	7674	7427	7194	6976

Cr Ord.	34	35	36	37	38	39	40	41	42
0	7033	6832	6642	6462	6292	6131	5978	5832	5693
470	7028	6827	6637	6458	6288	6127	5973	5828	5689
890	7023	6822	6633	6453	6283	6122	5969	5824	5685
1270	7018	6817	6628	6449	6279	6118	5965	5820	5681
1610	7013	6812	6623	6444	6275	6114	5961	5815	5677
1920	7008	6808	6619	6440	6270	6109	5957	5811	5673
2210	7003	6803	6614	6435	6266	6105	5952	5807	5669
2480	6997	6797	6609	6430	6261	6100	5948	5803	5665
2730	6992	6793	6604	6425	6256	6096	5944	5799	5661
2950	6987	6788	6599	6421	6252	6092	5939	5794	5657
3170	6983	6783	6595	6416	6248	6087	5935	5790	5653
3370	6978	6778	6590	6412	6243	6083	5931	5786	5649
3550	6973	6773	6585	6407	6239	6079	5927	5782	5645
3730	6968	6769	6581	6403	6234	6074	5923	5778	5641
3900	6962	6763	6575	6398	6229	6070	5918	5773	5636
4050	6957	6758	6571	6393	6225	6065	5914	5769	5632
4200	6952	6754	6566	6389	6220	6061	5909	5765	5628
4340	6947	6749	6561	6384	6216	6057	5905	5761	5624
4480	6942	6744	6557	6379	6212	6052	5901	5757	5620
4610	6937	6739	6552	6375	6207	6048	5897	5753	5616
4730	6932	6734	6547	6370	6203	6044	5893	5749	5612
4850	6927	6729	6542	6365	6198	6039	5888	5744	5608
4960	6922	6724	6537	6361	6193	6035	5884	5740	5604
5070	6917	6719	6533	6356	6189	6030	5879	5736	5600
5170	6912	6715	6528	6352	6185	6026	5875	5732	5596
5270	6907	6710	6523	6347	6180	6022	5871	5728	5592
5360	6902	6705	6519	6343	6176	6017	5867	5724	5588
5450	6897	6700	6514	6338	6171	6013	5863	5720	5584
5540	6892	6695	6509	6333	6166	6008	5858	5715	5579
5625	6887	6690	6504	6328	6162	6004	5854	5711	5575
5705	6882	6685	6500	6324	6157	6000	5850	5707	5571
5785	6877	6680	6495	6319	6153	5995	5845	5703	5567
5860	6872	6676	6490	6315	6149	5991	5841	5699	5563
5935	6867	6671	6486	6310	6144	5987	5837	5695	5559
6005	6862	6666	6481	6306	6140	5982	5833	5690	5555
6075	6857	6661	6476	6301	6135	5977	5828	5686	5551
6145	6852	6656	6471	6296	6130	5973	5824	5682	5547
6210	6847	6651	6466	6291	6126	5969	5820	5678	5543
6270	6842	6646	6462	6287	6121	5965	5815	5674	5539
6330	6837	6641	6457	6282	6117	5960	5811	5669	5535
6390	6832	6637	6452	6278	6113	5956	5807	5665	5531
6450	6827	6632	6448	6273	6108	5952	5803	5661	5527
6510	6821	6626	6442	6268	6103	5947	5798	5657	5522
6565	6816	6622	6438	6264	6099	5942	5794	5653	5518
6620	6811	6617	6433	6259	6094	5938	5790	5648	5514
6670	6806	6612	6428	6255	6090	5934	5786	5644	5510
6720	6802	6607	6424	6250	6086	5930	5781	5640	5506
6770	6797	6602	6419	6246	6081	5925	5777	5636	5502
6820	6792	6598	6414	6241	6077	5921	5773	5632	5498
6865	6786	6592	6409	6236	6072	5916	5768	5627	5494
6910	6781	6587	6404	6231	6067	5912	5764	5623	5490
6955	6776	6583	6400	6227	6063	5907	5760	5619	5486
7000	6771	6578	6395	6222	6059	5903	5756	5615	5482

Table B.2: Echelle spectrograph wavelength as function of crank number and dispersion order. Table shows central orders dispersion (34—42) reporting their corresponding wavelengths (from 7 033 to 5 482 Å) and the crank value needed to select a specific central wavelength λ_c .

Cr. - Ord.

Table B.3: Echelle spectrograph wavelength as function of crank number and dispersion order. The highest orders dispersion (43–60) reporting their corresponding wavelengths (from 5 561 to 3 837 Å) and the crank value needed to select a specific central wavelength λ_c .

Bibliography

Hunten, D. M., Wells, W. K., Brown, R. A., Schneider, N. M., & Hilliard, R. L. 1991, PASP, 103, 1187

Schroeder, D. J., & Hilliard, R. L. 1980, ApOpt, 19, 2833